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Yang-Lee Zeros of the Potts Model 
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The Yang-Lee zeros of the three-component ferromagnetic Potts model in one 
dimension in the complex plane of an applied field are determined. The phase 
diagram consists of a triple point where three phases coexist. Emerging from the 
triple point are three lines on which two phases coexist and which terminate at 
critical points (Yang-Lee edge singularity). The zeros do not all lie on the 
imaginary axis but along the three two-phase lines. The model can be general- 
ized to give rise to a tricritical point which is a new type of Yang-Lee edge 
singularity. Gibbs phase rule is generalized to apply to coexisting phases in the 
complex plane. 
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1. INTRODUCTION 

It was pointed out in 1952 by Yang and Lee (]) (YL) that the behavior of 
the zeros of the partition function in the complex plane of a field variable 
H is closely related to the occurrence of phase transitions. The thermody- 
namic properties, in the thermodynamic limit, are determined by the 
density of zeros of the partition function. The application of the results of 
YL to the study of phase transitions has been limited because of the 
difficulty in obtaining the distribution of these zeros. The distribution of 
zeros has been studied in a number of spin models. (2) For a variety of 
ferromagnetic models, including the Ising (]) and spherical models, (3) the 
zeros lie on the imaginary field axis. A rigorous proof of this result for one- 
and two-component ferromagnets has recently been given by Lieb and 
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Sokal. (4~ However, this result is not expected to be generally true and it is 
thus of interest to study other models. 

In the thermodynamic limit the locus of YL zeros can be found by 
analytically continuing the magnetization M in the complex field plane and 
locating the branch cuts of M. The discontinuity in M across the cut is 
proportional to the density of zeros. The lines of zeros are thus the phase 
boundaries. In the one-dimensional Ising model the zeros lie on the 
imaginary axis beginning at H - -  + iHo(T ). The edge of this gap is called 
the YL edge singularity and is a branch point of M(H). Fisher (5) has 
introduced a critical exponent a to describe the behavior of the density of 
zeros near this edge. In the one-dimensional Ising model o = - �89 and in 
mean field theories o = �89 

In this paper we study the YL zeros of the three-component ferromag- 
netic Ports (6) model in one dimension in the complex plane of an applied 
field. This model is found to have an interesting phase diagram consisting 
of a triple point where three phases coexist. Emerging from the triple point 
are three lines on which two phases coexist. These lines terminate in critical 
points. From a mathematical point of view the triple point corresponds to 
the point where three eigenvalues of the transfer matrix have the same 
magnitude. Such an event generally requires a special symmetry (which 
occurs in the Potts model). On the two phase lines two eigenvalues have the 
same magnitude and thus the distribution of zeros on these lines is similar 
to that for the one-dimensional Ising model. At the critical points the two 
eigenvalues become equal and the density of zeros in the thermodynamic 
limit diverges as in the Ising model with an exponent of o = - �89 The zeros 
only lie on the imaginary field axis at zero and infinite temperatures. At 
any finite temperature one of the two phase lines lies on the imaginary field 
axis and the other two lines extend into the complex plane and are complex 
conjugates. 

By including a second complex field the region of triple points be- 
comes a plane in the four-dimensional space of the two complex fields. This 
plane contains tricritical points at which the three phases simultaneously 
become identical. The density of zeros diverges with a - ~ exponent as the 
tricritieal point is approached. The tricritical point corresponds to the 
intersection of three planes of critical points. These considerations lead to a 
generalization of Gibbs phase rule to describe coexisting phases in the 
complex plane. 

2. TRANSFER MATRIX 

In the Potts model at each site of a regular lattice of N sites we place a 
spin which can take on q values. Nearest-neighbor like and unlike spins 
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have an intersection energy - e  and 0, respectively. In the q-component 
model it is possible to apply q -  1 independent "magnetic fields" to each 
spin. The determination of the distribution of YL zeros in this multidimen- 
sional complex space is complicated and it is desirable to simplify the 
problem. (We discuss the general problem in Section 8.) We choose the 
"magnetic field" H acting on each of the spins such that the different states 
of a spin labeled by r = 1 . . .  q have field energies H ( q  + 1 - 2r) (q even) 
and H[(q  + 1)/2 - r] (q odd). We treat even and odd q differently to avoid 
factors of �89 There is thus a splitting of 2H  (q even) and H (q odd) 

between adjacent states. With this choice for the field energies the zeros of 
the partition function of a single spin in the field lie on the imaginary H 
axis at Z 2 ~ -  d 2 H / k T  = e 2h = e 2~rir/q ( q  even) and z = e "/kT = e h = e 2~rir/q ( q  

odd) w i t h r = l . . . q -  1. 
Most of the discussion below is for the q = 3 component model in one 

dimension. We are interested in the analytical behavior of the N site 
partition fuclction ZN(X,Z ) where x = e - ' /k r .  This can be written 

Z N ( x , z  ) = Tr[ T ( x , z )  ] N (2.1) 

where the transfer matrix 

[! x il[z T ( x , z )  = 1 1 (2.2) 
1 

X 
Z 

Since Z is a palindromic polynomial in z (symmetric with respect to 
z ~ l / z )  with real coefficients, its roots occur in real pairs (~, 1/~), in pairs 
of modulus one (e-+i~), or in quartets (e+~-+ir T has the characteristic 
equation, 

f(?~) = ~k 3 - 3p?~ 2 + 3pAff~ -- ~3 = 0 (2.3) 

w h e r e 3 p = z + l + z - 1 ,  A 2 = ( l _ x  2) a n d A  3 = ( 1 - x ) 2 ( l + 2 x ) . T h i s r e -  
sult is generalized to q-component models in Appendix A. The partition 
function can be written 

ZN = )~lN + ~2N + )%N (2.4) 

where the 2~; are the three roots of (2.3). It is convenient to introduce 
= A3t/3o, the characteristic equation becomes 

f ( o )  = o 3 - 3?o 2 + 3firo - 1 = 0 (2.5) 

where/5 = jo/A31/3 and r = A2/A31/3. The partition function is then 

Z N = A3N/3p N (2.6) 
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with 

PN = 01N -Iv 02 N "Iv 03 N (2.7) 

where the o i are the three roots of (2.5). For  later purposes we note that 

/ 5=  o 1 + 0 2 +  0 3  

3pr = ola  2 + o2o 3 + o3a I = o1-1 + o2 - I  + 03 -1 (2.8) 

1 = 0 1 0 2 0 3  

We first consider some simple cases where the roots of (2.3) are easily 
obtained. 

(a) Zero temperature (we treat x = e - ' / k r  and z as independent  
variables): 

A 2 = A  3 =  1, )t l = z ,  )t 2 = z - 1 ,  X 3 =  1 
(2.9) 

Z N =  ZN + z - N  + 1 

which has the roots at 

2~ri ( / +  l )  
h = w -  3 '  I = 0 , 1 , . . . , N -  1 

Thus all the YL zeros lie on the imaginary h axis. 
(b) Infinite temperature:  

A 2 = m 3 ~--- 0 ,  ~k I = X 2 = 0 ,  ~k 3 = 3p 

N 
z N = ( z  + z - l  + l) 

which has roots at h = 27ri/3, 4~ri/3 and again 
imaginary axis. 

(c) Triple point:  

p = 0 ,  

(2.10) 

the zeros lie on the 

Z = r r ~k i = A31/2(1,  w, r 

zN = zx3N/3(1 + ,0 N +  2N) (2.11) 

where ~ = e 2'~i/3. Thus Z u = 0 for N v a 3m and h = 2~ri/3,4~ri/3 are zeros 
for all temperatures for N 4 = 3, 6 . . . . .  We will refer to this point  where the 
three roots of (2.3) have equal magni tudes  as the triple point. It will be 
shown below that three two-phase lines meet at this point. 

(d) Zero field: 

p = 1, h = 0 ,  ~k 1 = ~k 2 = 1 - -  X ,  ~k 3 = 1 + 2X (2.12) 

which are just  the eigenvalues for the Potts model  in zero field. The 
parti t ion funct ion is positive at this point. 
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3. RECURSlON RELATIONS 

In  this section we show that  the part i t ion funct ion (PF) satisfies a 
recursion relation. We  first illustrate the me thod  for the Ising model  
(q = 2). In  this case the characterist ic equat ion is 

f(2)(a)  = 0 2 - Pl(2)o + 1 = 0 (3.1) 

where PI (2) = (z + 1/z)/A2~/2 and the PF 

ZN r = A2N/2pN(2) (3.2) 

We  use a superscript  2 to denote  the q = 2 case. In  (3.1) p (2 )  is the PF of a 
single spin (in units of A2=/2 ). N o w  considerf(2)(a)f(2)( - a); in this p roduc t  
replace o 2 by  o 

[ f ( 2 ) ( ( ~ ) f ( 2 ) ( - o ) I o n . - -  0 2 -  (P l  (2 ,2 -  2)0  -{- 1 

---- o 2 -- p2(2)o + 1 (3.3) 

where P2 (2) is the PF  for two spins. This procedure  can be cont inued and  
leads to the recursion relation for  the part i t ion funct ion 

Pn (2) = P , _  1 (2)2- 2 (3.4) 

where P,  --= P2-. At  each i teration we double  the size of the lattice. I tera t ion 
procedures  in which the lattice size is increased by  3,4 . . . .  are also 
possible and  result f rom considering f(o)f(o~o)f(o~2o), etc. in place of (3.3). 

The  recursion relat ion (3.4) can  be writ ten in the logistic 4 fo rm 
Xn+ 1 = XXn(1-  X,) with 2~ = 4. In  order  to find the zeros of P ,  we must  
determine what  values of z, i.e., P1 are m a p p e d  into Pn = 0 by  (3.4). Setting 
Pn = 2 cos 0 , ,  Eq. (3.4) reduces to 

q)n = 2q),_ l . . . . .  2 n-  101 (3.5) 

and  the zeros of Pn are at 

q , , = 2 " - ~ O l = ( l + � 8 9  l = 1  . . . 2  "-~ (3.6) 

In  terms of the magnet ic  field the Y L  zeros lie on the imaginary  h axis. 
Setting h = iO f rom (3.6) we have  

cost~ (l  + 1/2)~r 
A2!/2 -- COS N (3.7) 

4 For a review see Ref. 7. 
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where we have replaced 2 n- 1 by N. The density of zeros ~ l) per spin is given 
by 

1 I ll sin__0 
g(O) = cos20), /2 

and thus diverges with an exponent o = - 1 at the YL edge cos20 = dx 2. 

The above procedure can also be applied to the Potts model. In the 
three-component case the characteristic function Eq. ( 2 . 5 ) f ( o ) =  o 3 -  
PIo 2 + Qlo - 1, where P1 = 3/5 and Q1 = 3/5r. P1 is the partition function 
of a single spin (in unity of A31/3 ). Following the same procedure as in (3.3) 
we obtain the recursion relations 

P , =  P 2 _ , -  2Q ,_ ,  
(3.9) 

Q, = Q~-1 - 2P ,_ ,  

which now involve two parameters. Q, may be shown to be the partition 
function of a reciprocal Potts model. Thus the function f (o) ,  Eq. (2.5), is 
preserved under the transformations/5 ---~/sr, r --~ r -  =, a ~ o - 1. Then 

Q,(/5, r) = P.(/sr, r -1) 
(3.1o) 

e,( /5 ,r)  = Q,(/sr, r -1) 

so that Q, is the PF of the same model with parameters/sr,  r -  1. Any root of 
P,(/5, r), say,/~ = p;(r), gives a root of Qn(/5, r),/5 = (1 /r )p i (1 /r ) .  

The recursion relations (3.9) can be used to analyze the properties of 
the Potts model PF. However, the properties of the recursion relations are 

2 . 1 
most easily obtained from the roots a i of (2.5) because P, = 01 + 

2 ~ r 2 n t 2 ~ t _ 2  ~ - t  , , - ~  . . 
02 +03  , Q , = o ~ -  + 0 2  + 0 3  -2 . A t  a t n p l e p o m t w h e r e w e  
have three roots of unit magnitude the recursion relations map into them- 
selves. At any other point the recursion relations eventually map to infinity 
because there are one or more roots of magnitude greater than 1. If there 
are two roots o 1 = Re i(ee+q'), 0" 2 = Re i('p-~k) with R > 1 then after a number  
of iterations these two roots dominate Pn and Qn ~ o 3- 2"-* = R 2 ~ i @ 2 " .  The 
recursion relations then become of the Ising form (3.5) and the angles ~, ~k 
double at each iteration. Some further properties of the recursion relations 
are given in Section 8. We now turn to a study of the roots of (2.3). 

. ROOTS FOR REALp 

We consider the roots of (2.3) for p real and write it as 

~k 3 - -  A 3 

3p - ~(~ _ A2 ) (4.1) 



Yang-Lee Zeros of the Potts Model 309 

/ 

I - X ~ / l + 2 X  

/ /  

Pt 

Fig. 1. Sketch of Eq. (4.1). 

This funct ion is sketched in Fig. 1. At  p = 1 there is a double root  
X = 1 - x and  a single one X = 1 + 2x and f o r p  > 1 there are three positive 
roots and Z u > 0. For  p < Pt we have one positive and two negative roots 
and  again it can be shown that no zeros of the PF occur. The two negative 
roots coalesce at Pt which is determined by eliminating X between f(X) = 0 
andf ' (X)  = ,  i.e., the vanishing of the discriminant off(X) (see Section 5). 

F o r p l < p < l w e h a v e z =  

have one positive root  X 3 with A 2 
roots Xl, 2 = Re -+ir These satisfy 

3p= 

3pA 2 = 

ei~ = �89 + 2 c o s 0 )  with ~r > 0 > 0. We 

< X 3 < 1 + 2x and two complex conjugate 
the equations 

X 3 + 2R cos ~p 

R 2 + 2X3R cos ~ (4.2) 

A3 = X3 R 2 

F o r p  = 0 X 3 = R = A31/3 , 0 = t p  = __+ 2~r/3. This is an invariant  point  of the 
0, ~ mapping.  Choose 0 < ~ < 7r and  then 

l > p > 0 ,  0 < t p <  2--7-~ 
3 ' 

p : < p < O ,  Tr > tp>  2--K~ 
3 ' 

We are now in a position to consider the PF 

Z N = X3 N J- 2RNcosNt)  

R < X  3 

R > X  3 

(4.3) 

(4.4) 
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N=I  N=2 

0 

I/2, 
~ " l r  0 

-1/2" 

Fig. 2. 

N=3 N=4 

Sketch of cos N~ and  - ( l /2 )Qt3 /R)  N versus t~. For  ~ = 27r/3 the latter passes  
th rough  - 1 /2 .  

F r o m  (4.2) X3, R, and  p can be considered to be functions of +, the 
intersections of cos N~ and  - ( 1 / 2 ) ( X 3 / R ) N  are sketched in Fig. 2 for small 
N. The line - (1/2)(X3/R)  N always passes through - 1 / 2  for + = 2~r/3. 
For  x --- 0, this line is horizontal  and there are N intersections correspond- 
ing to Z N = 0. The intercept of this line at % = 0 is - ( 1 / 2 ) [ ( 1  + 2x)N/(1 -- 
X)]. As x increases, this line approaches the g, axis for ~ > 27r/3 and moves 
away f rom this axis for qJ < 2~r/3. Consider  the cases N >/3 in Fig. 2. As x 
increases the two roots near ~r/N coalesce to become a double root  and 
then move into the complex p plane as x is further increased. For  N = 3, 4, 
5 only one such double  root  occurs, but  for N >/6 there can be two such 
double roots, for N /> 9 there can be three such double  roots, etc. The 
values of + near where this behavior  occurs are t ) =  ~r/N, 3~r/N . . . . .  
(2r - 1)~r/N, r = 1 . . . [N/3] ,  where [ N / 3 ]  is the integer par t  of N/3.  For  

- 1/3  < p < 1, z lies on the unit circle and when p becomes complex z 
moves off the unit circle. Consider some PF ZN(x, z). At x = 0 all the zeros 
lie on the unit circle and as x increases the first pair of zeros, say, z I , z 2 and 
z* z* 1, 2, move toward each other and become double zeros. As x further 
increases they split and move away f rom the unit circle perpendicularly 
forming a quartet  [re+-i~176 This process is then repeated by the 
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next pair of zeros on the unit circle and the process is repeated at increasing 
0 until the last pair before 0 = 2~r/3 coalesce and the process stops. As N 
increases the process occurs at smaller values of x and in the limit N ~ ~z, 
x > 0 we obtain three branches of zeros which meet at the triple point 
p = 0, 0 = qJ = _ 2~r/3. In terms of the magnetic field for x sufficiently 
small all the YL zeros lie on the imaginary h axis. As x increases they split 
off in pairs giving rise to zeros at _+ h i +_ iO i where h i is real. In the N--~ 
limit in the upper half h plane we have three lines of zeros meeting at 
0 = 2~r/3. The zeros on the imaginary h axis lie in the region 27r/3 < 0 
< 0l, where 2 cos 0 t + 1 = Pt. We now analyze in more detail the positions 
of the zeros for complex p. 

5, CRITICAL POINTS 

The critical points where the lines of zeros terminate (for N o  ~ )  
occur at those values of p at which we have two equal roots of the 
characteristic equation (2.3). The equation for p is obtained by elimination 
of X between f(?t) = 0 a n d f ' 0  t) = 0, i.e., the vanishing of the discriminant of 
f()t). This is easily shown to be proportional to 

D ( p )  = (A3 - -p2A2)  -- 4( pA2 -- p2) (  pA3 -- p22X22) (5.1) 

which is a quartic in p. We already know one root corresponding to the 
zero field case p = l, ~ = 1 - x, 1 - x, 1 + 2x. The other three roots corre- 
spond to the critical points and there is one real, negative root Pl and two 
complex conjugate roots. These are given in Appendix B. 

At low temperatures (x << 1) the critical points are at 

1 x 2 x 3 3x2 (1 + 
P ' = - 3 +  3 3 ' 1 - - 5 -  i / r  (5.2) 

At high temperatures ( 1 -  x << 1) the zeros move toward p = 0 and the 
critical points are at 

p, = [3(1 - x2)] ' /3(  - l,e +-~ri/3) (5.3) 

Thus the phase diagram (lines of zeros of the PF) consists of three lines 
beginning at the triple point p - - 0  and terminating at the above three 
critical points. On these lines two phases coexist, while at the triple point 
three phases coexist. At the critical points where two roots of the character- 
istic equation become equal the density of zeros (for an infinite system) will 
diverge with an exponent of - 1 / 2  as in the Ising case Eq. (3.8). At the 
triple point the density of zeros is finite. 
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In the h plane the triple points lie at h = +_ 2~ri/3. The critical points at 
low and high temperatures may be found from (5.2) and (5.3): 

h = i(~r - x ) ,  33/4xe '~i/2(1+-1/6), x << 1 
(5.4) 

h - 2 ~ r i / 3 =  i~[313 /4 ( l  - x )2] l /3 (1 ,e -~ i /a ( ' z2 /3 ) ) ,  1 -  x<<l  

There is another set of critical points in the lower half h plane obtained by 
taking the complex conjugate of the above results. 

6. DISTRIBUTION OF ZEROS 

In the thermodynamic limit the locus of zeros of the PF can be found 
by analytically continuing the magnetization in the complex field plane and 
locating the branch cuts of M. The discontinuity in M across the cut is 
proportional to the density of zeros. In order for the magnetization to show 
a cut it is necessary that the two large eigenvalues have equal magnitude. 
Thus we can determine the locus of zeros as those lines in the complex p 
plane where two roots of the characteristic equation have the same magni- 
tude. In this plane there are three such lines beginning at the triple point 
p = 0 and terminating at the critical points determined in the previous 
section. 

(a) On one of the two phase lines p is real Pt < P < 0 and the roots 
have the form 

o I = o~  = R e  i+, o3 -- ~ - 2  (6.1) 

Substituting in (2.8) and eliminating p gives 

~ 4  __ r 
2 cos ~ - (6.2) 

r g  3 - 

The curve of R versus ~p has been determined numerically and is shown in 
Fig. 3. 

(b) The other two phase lines are complex conjugates. On the line 
where loll = 1o3[ the roots can be written in the form 

0" 1 = Ke i(0++), 0 2 = Re  i(+-4), 0 3 = R - 2 e  -2iq' (6.3) 

Substituting these results in (2.8) and eliminating/5 the real and imaginary 
parts can be written 

1/2 

2 c~ = [ (r~2 + 1)(/~4 - r) ] / ~ 2 ( / ~ 2  r 2) 

(6.4) 
~ 4 +  r 

COS~b- R (  K2r + 1) COSqb 
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/ b 

Fig. 3. Pairs of roots of equal magnitude for r = 0.5. The unit circle is shown dotted. The YL 
zeros (in the thermodynamic limit) correspond to the regions outside the unit circle. (a) The 
line Re i~ on which [011 = Jo2[; (b) the line Re ie;'+~') on which Iojl = ]o31 and its complex 
conjugate b* on which Io21 = t03I. 

~e 

~t 

~t 

2r r /3  

Fig. 4. (a) Phase diagram in the p plane for r = 0.5. (b) Phase diagram in the H / k T  plane. 
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which are again suitable for numerical evaluation. The results are shown in 
Fig. 3. 

From the values of the roots we can determine p and the phase 
diagram in the/5 plane (Fig. 4a) and the h plane (Fig. 4b). 

Close to the triple point the two complex two-phase lines each make an 
angle a with the real positive p axis given by 

1 - r (6 .5)  
t ana  =,~- 1 ~ r  

as T ~ O  r--> 1 and a vanishes. In the h plane the two complex critical lines 
in the upper half-plane make the same angle a with the negative imaginary 
axis. 

7, MAGNETIZATION 

In the thermodynamic limit the locus of YL zeros corresponds to 
branch cuts in the magnetization M. The magnitude of the discontinuity in 
M across the cut is proportional to the density of zeros g(h): 

g(h) = ~lM(h+ ) -  M(h_ )l (7.1) 

where h+ refers to the two sides of the cut. By differentiation of (2.7) and 
(2.8) with respect to h, 

M - 1 01n Z 
N Oh 

_ 2sinhh [ OlNfl + 02Nf2 + 03Nf3 ] (7.2) 
A31/3p u 

where 

f l  ~  
( o , -  % ) ( o  t - 03) (7 .3 )  

and f2,3 are obtained by cyclic permutations of the subscripts. In the 
thermodynamic limit Z is determined by the eigenvalue of greatest magni- 
tude and in order for the magnetization to show a cut it is necessary that at 
least two eigenvalues have equal magnitudes on the cut. These eigenvalues 
have been denoted by o I and 02 in Eq. (6.1) and then the density of YL 
zeros is given in terms of the eigenvalues by 5 

sinh_____hh (fl  - f2) (7.4) 
g =  ~.A31/3 

This formula can be used to evaluate the density of zeros. We have already 

5 The same formula can be obtained by noting that the density of zeros along the two-phase 
line (6.1) is uniform in ~ and equal to 1/vr for large N. Thus g(h) = (l/r 1. 
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noted that at the critical points the density diverges as in Ising case Eq. 
(3.8) with an exponent of - 1/2. Close to the triple point it is found that 

1 + r (1 - r + r2) 1/2 

g -  2rrA31/3 , 2,rrA31/3 (7.5) 

where the two results refer to the branches (6.3) and (6.4), respectively. 

8. D I S C U S S I O N  

In this paper we have discussed the distribution of YL zeros in the 
one-dimensional, three-component Potts model. The new feature in this 
model, not present in the Ising model, is the possibility of three roots of 
equal magnitude which leads to the appearance of a triple point in the 
phase diagram. It is clear that in higher-component Potts models more 
complicated multiple points will occur. The YL zeros at zero temperature 
lie on the imaginary field axis but as the temperature is raised they split off 
in pairs from this axis forming, in the thermodynamic limit, the phase 
diagram shown in Fig. 4. 

We have discussed in detail the case where the applied field splits the 
spin states equally in energy. In general two independent fields, say, H A 
and H B, can be applied to the three-component Potts model. In this case a 
new feature can appear in the phase diagram, i.e., a tricritical point where 
the three phases simultaneously become identical. For two independent 
fields Eq. (2.5) generalizes to 

f ( o )  = 0 3 - 3 p , o  2 + 3p2ro - 1 = 0 (8.1) 

where 

1 + + (zAny) ') 
f l l -  3A31/3  

(8.2) 
1 (ZA -l+zB +z ze) 

]92 -- 3A31/3 

= e HA~/kr, . The energies of a spin in the fields are H A , H  ~ where zA, s 
- H A - H B.  H A and H B are complex variables so that the phase space is 
four dimensional. 

The region of triple points is determined by requiring that (8.1) have 
three roots of unit magnitude. If we write these in the form e i4~, e i~2, and 
e -  i(apl + ~b21 , then 

3pl  = 3 p ~ r  = e i4' + e i~'2 + e i(t~l+tfi2) (8.3) 

The triple points thus lie on a two-dimensional surface (at constant T). 
Equation (8.3) can be solved for z A , zB, and (z A zs ) -  1 and they are the three 
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Fig. 5. Deltoid region of triple points in the P l plane. The tricritical points are at  the vertices 
1,~,w 2. 

solutions of 

Z3 _ 3/)IA31/3Z 2 + 3p~' A31/Sz _ 1 = 0 (8.4) 
r 

In  thep l  space the surface of triple points (8.3) is a deltoid shown in Fig. 5. 
On the edges of the deltoid we have ~1 = +2 so that on  these lines two 
phases become identical. At  the corners of the deltoid the three roots of 
(8.1) are equal and are o i = 1, ~o, or ~02. These points are thus tricritical 
points. We also note  that  the region of triple points is preserved under  the 
map  (3.9). The tricritical po i n t p l  = 1 is an unstable fixed point  of the map  
(3.9) and  the other twop l  = ~0, ~0 z are an unstable two-cycle. 

The behavior  of the density of zeros near a tricritical point  is of 
interest. If we set 3/31 = 3 - 81 , 3r/32 = 3 + 82 where 81 and 82 are small it is 
easily shown that the roots of (8.1) are 

o 1 ~ 1 "4- 8 1/3, O 2 ~ 1 + W8 1/3, O 3 ~ 1 + ~028 1/3 (8.5) 

where 8 = 3~ + 82. F r o m  (7.2) we conclude that the density of zeros 
diverges as 8 -2/s  as we approach  the tricritical point  leading to an 
exponent  o = - 2 / 3  for a tricritical point. This assumes that the direction 
of approach  to the tricritical point  is not  tangential to any of the lines of 
critical points meeting there. On  these lines the density of zeros diverges 
with the Ising exponent  o = -  1/2.  A crossover function can be con- 
structed to describe this behavior.  
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We have found that there are interesting multiple and multicritical 
points in the complex plane of the field variables. This suggests a general- 
ization of Gibbs phase rule. Suppose we have q components and m 
coexisting phases. The intensive thermodynamic variables are T and 
(q - 1) complex field variables giving a total 2q - 1 intensive variables (2q 
if we include the pressure). For real fields the condition for two coexisting 
phases is that the free energies of the phases be equal. When the intensive 
variables are complex, the PF and the free energy are complex and it is 
necessary to generalize this condition. In this paper we have found that, in 
the thermodynamic limit, two coexisting phases require that the two largest 
eigenvalues of the transfer matrix have the same magnitude; three coexist- 
ing phases require that the three largest eigenvalues have the same magni- 
tude, etc. Thus the PF's of coexisting phases have the same magnitude but 
different phase angles. This suggests that the condition for coexisting 
phases in the complex plane requires that the real part of the free energies 
be equal and that the phase angle of the PF (imaginary part of the free 
energy) can be arbitrary. Thus m coexisting phases lead to m -  1 condi- 
tions and the number of thermodynamic degrees of freedom is f = 2q - m, 
(2q - m + 1 if the pressure is included). Thus for q ---- 3 the triple points 
(m = 3) occupy a three-dimensional region (including T) and double points 
(m = 2) a four-dimensional region. At a critical point an extra condition 
arises and f =  3, and at a tricritical point two extra conditions arise 
and f =  1. 

A P P E N D I X  A 

We derive the characteristic equation for the one-dimensional 
q-component Potts model in the case of a single field which splits the states 
equally. If no external field is present the characteristic function is 

where A q ( x )  = (1 - x ) q - | [ 1  + (q - 1)x] and the upper and lower signs are 
for q odd and even, respectively. Similarly, if x = 0 and the field is present 
(z = e ~/kr) the characteristic function is 

�9 . . (?t - z ( q -  I~ /2) ,  q odd 

= ( x  - ( x  - - - q e v e n  

(A2) 
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In either case we obta in  an equat ion like 

gq()t) = )tq - d?~q)(z))t q-1 + do(zq)(z))~ q - 2 . . .  u 1 (A3) 

with ffk(q)(1) = (~), q~(z) = eOq_k(z ). 
W h e n  x v a 0, z v ~ 1 the characterist ic funct ion is 

f (X)  = X q - d~]q)(Z)Al(X)~k q-I  "4- ~(2q)(Z)A2(x)~k q- 2 " " " "+ A q ( X )  (A4) 

We  now study the propert ies of ~(k q)(z). First consider q even and  change X 
to - X  for convenience.  Then  

z q - !  z q - 3  " . . z q _  1 

This funct ion satisfies a functional  equat ion 

(1 "t- ~ t z - ( q - 1 ) ) g q ( - - ~ W , 2 )  = (1 "-I- ~w,q+l)  g q ( - - ~ )  (15)  

which can be used to determine the series (A3). Substituting this series in 
(A5) and  equat ing coefficients of X on both  sides gives 

~q) z z q - k _  z -~q -k )  s i n h ( q -  k ) f i H  
~k+l(  ) =  zk+l  z_ (k+l  ) e~(kq)(z)= ~ 1--]--)--~eO(J)(z) (A6) 

which gives an iterative procedure  for determining the ~k. For  q odd the 
same result holds if we replace z by  z 1/2. 

APPENDIX B 

The  characterist ic equat ion (2.5) has double  roots whenever  its discrim- 
inant  D ( p ) ,  a quartic,  vanishes;  there are four  such roots. Ins tead  of 
analyzing D ( p )  it is simpler to study f (o) .  Let  ~- be  the double root;  then 
01 = o 2 -- 1- and  0 3 = T -2. The  two equat ions (2.8) invo lv ingp  as a symmet-  
ric funct ion of the roots are 

3/5 = 2~- + T -2 (B1) 
3r/3 = 2~-- I + ,/.2 

A quart ic g(~-) can be obta ined  by eliminating/5 between the two equat ions 
above  

g(~.) = r4 _ 2r,r 3 + 2~" - r (B2) 

It  can be shown that  g(~-) has only one root  inside the unit  circle for 
0 < r < 1. B o w m a n  (a) considers the equat ion 

sn (2u, Y) = sn ( K ( 7 )  - u, 7) (B3) 
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where 3' is the modulus and 4K(3,) is the real period of the elliptic function 
sn(u, 7). From Eq. (B3) a quartic in s = sn(u, 3') can be derived: 

~ / 2 S 4  - -  2y2s 3 + 2s - 1 = 0 (B4) 

Bowman finds the following amplitudes: 

u = ~K(r) ,  3K(:,) + 2iK'(r) ,  } K ( r )  +- ~iK' (r )  (B5) 

thus solving Eq. (B3). If in Eq. (B4) we let r = rs; r 3 = ),2 then Eqs. (B2) 
and (B4) become identical. An irreducible set of roots is 

, ,  = 

r 2 = rsn(3X + ~iX',  y) 
(B6) 

"/'3,4 = rSll ( 1 K -4- 2 iK', y) 

{ r  I > 0, r 2 < 0, r 3 = r ~ } ,  (1%[ < 1 < ]ri] , i =  2 , 3 , 4 }  

Another quartic h0r ) can be constructed from g(r) by forming 
~r4g(1/r - 1 / ~ - )  = h(rr). Clearly the roots of h0r) are ~.-2, %-2, %2, 
r4 2. The reciprocal transformation 

r - f f  (B7) 
1 - r2/5 

applied to h(rr) = 0 implies D(p)  = 0. The roots of the discriminant are 

r% = dn2(uj, y) /cn2(uj ,  ~,) = "y2Sj'/2(/,/j q- g-Jr. iK', 7) 

An irreducible set of roots of the discriminant D(p)  is 

ffl = rsn2(23K + iK' ,r) ,  fi3 = rsn2( 2 K  + �89 

if2 = rsn2(~ iK', Y), if4 = rsn2( 2 K  - ~iK', r) (B8) 

(p, > 0,?2 < 0,?3 =PZ} 

The same result can be obtained by noting that the discriminant D(p)  
occurs as the denominator of the expansion of sn (3 u, ~,), cn (3 u, y), dn (3 u, ~,) 
in powers of s = sn(u,~,) (see Ref. 8). 
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